If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20t-16t^2+950=0
a = -16; b = 20; c = +950;
Δ = b2-4ac
Δ = 202-4·(-16)·950
Δ = 61200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61200}=\sqrt{3600*17}=\sqrt{3600}*\sqrt{17}=60\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-60\sqrt{17}}{2*-16}=\frac{-20-60\sqrt{17}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+60\sqrt{17}}{2*-16}=\frac{-20+60\sqrt{17}}{-32} $
| m+13=-27 | | -10x+125=2x-19 | | 7M+2-2=5m+18-2 | | -93-8x=-15x+82 | | 2x-51=13-6x | | 9/19-(-10/19x)=8/19 | | 4+8x=5-10x | | 73=10-7m | | -38=17+5.5x | | 54=n−32 | | 8=6a-28 | | 5/11x+4/11=3/11 | | 3x-4/5=2/3 | | 1/2x-38=17+6x | | 2/3x13.2=2.50 | | T=2s+4.67 | | 4n+9=-9 | | -32=-6y+4(y-5) | | w−44=31 | | Y=0/4x+3 | | 8(x+2)-3(4-x$=6(7-x)+8 | | 13+14=25+12x | | T=2s+ | | 83+12=d | | p/5-7=12 | | 11+11-3=l | | 16=3c+4 | | x*x=21x-2 | | h=4(7) | | 11+9/11x=29 | | 8(5x+2=27 | | 2=2r-4 |